Moduł Hosta US część 1 AVT-983

Cieszące się niezmiernie długo popularnością dyskietki 1,44 MB, których czytniki jeszcze do dziś są instalowane w komputerach, chyba powoli będą jednak odchodziły w zapomnienie. Do długotrwałego przechowywania danych wyparły je płytki CDROM i DVD, do chwilowego zapisania danych, np. w celu przeniesienia ich z komputera na komputer, już od dłuższego czasu służą pendrive'y. Wbudowana w nich pamięć półprzewodnikowa o pojemności dochodzącej do kilku gigabajtów nie daje szans dyskietce. Od niedawna, za sprawą układów Vinculum, pamięci pendrive można w bardzo prostv sposób wykorzystywać nawet w najprostszych systemach mikroprocesorowych.

Rekomendacje:

nowe układy rodziny Vinculum z pewnością szybko zdobędą popularność, tak jak stało się to w przypadku układów FT232 i FT245. Chętni ich stosowania nie mogą nie zrobić modułu Hosta USB.

PODSTAWOWE PARAMETRY

- Płytka o wymiarach 56x44 mm
 Zasilanie: +5 V, dostępne napięcie +3,3 V na pinach modułu
- Gniazdo: USB Host typu A
- Interfejsy: UART, SPI, FIFO wybierane dwoma zworkami, drugi interfejs USB dostępny na pinach modułu
- Wskazania o stanie modułu za pomocą diod LED
- Współpraca z pamięciami masowymi z systemem plików FAT
- Komunikacja za pomocą kilkunastu prostych komend przypominających komendy DOS

Większość dostępnych urządzeń pendrive wyposażono w interfejs USB. Tego typu tanie pamięci są idealne do zastosowań zarówno profesjonalnych, jak i amatorskich, w urządzeniach, które muszą gromadzić w nieulotnych pamięciach duże ilości danych. Obsługa takich pamięci za pomocą najprostszego mikrokontrolera jest od jakiegoś czasu możliwa dzięki układowi VNC1L produkowanemu przez znaną z konwerterów USB firmę FTDI. Układ VNC1L należy do nowej grupy układów nazywanych przez producenta Vinculum. Kontroler VNC1L pełni funkcje hosta USB. Za pomocą układu VNC1L (będącego pomostem pomiędzy pamięcią USB, a mikrokontrolerem) możliwa jest prosta obsługa urządzeń pamięci masowej (Mass Storage), czyli wszelkiego rodzaju dysków z interfejsem USB. Układ VNC1L umożliwia obsługę plików zapisanych w systemie FAT (FAT12, FA-T16 oraz FAT32) i to za pomocą prostych komend. Dzięki zastosowaniu układu VNC1L można zmniejszyć koszt budowy i czas realizacji urządzeń, które mają umożliwiać dostęp do dysków USB. Poprzez możliwość zmiany oprogramowania układu VNC1L (wymagany prosty programator) można go dostosować do własnych potrzeb. Producent układu udostępnia obecnie kilka wersji oprogramowania (*firmware*). Umożliwiają one ob-

sługę urządzeń pamięci masowej za pomocą interfejsu równoległego oraz szeregowych (SPI, UART, USB). Ponadto pamięci masowe można także obsługiwać za pomocą urządzenia USB Slave z rodziny FTDI, czyli za pomocą układów FT232 lub FT245.

Wartykule zostanie zaprezentowany uniwersalny moduł wykorzystujący układ VNC1L, który umożliwia dostęp do pamięci masowych za pośrednictwem już wymienionych interfejsów. Posiada on również złącze do podłączenia programatora, za pomocą którego można zmienić firmware. Programator, jak i sposób programowania zostanie przedstawiony w odrębnym artykule. Firmware można załadować za pomocą interfejsu UART, tak więc wspominany programator jest jedynie konwerterem USB<->RS232 z wykorzystaniem układu FT232R. W artykule zostanie również zaprezentowana komunikacja z pamięcią, z wykorzystaniem komputerowego terminala, jak i mikrokontrolera komunikującego się za pośrednictwem interfejsu UART. Zostaną również przestawione przykładowe połączenia modułu do mikrokontrolera za pomocą pozostałych interfejsów SPI, równoległym FIFO oraz USB.

Opis działania układu

Głównym układem modułu jest kontroler VNC1L, którego schemat blokowy pokazano na **rys. 1**. Wyróżnić w nim można dwa niezależne porty USB 2.0 pracujące z prędkościami Slow/Full Speed w konfiguracji Host/Slave, blok oscylatora z pętlą PLL, dwa kontrolery DMA, które poprawiają transmisję danych do interfejsów UART, FIFO, SPI z minimalnym udziałem mikrokontrolera. Układ posiada również 4 kB wewnętrznej pamięci SRAM, do której dostęp mają kontrolery DMA oraz mikrokontroler, mogący przechowywać w niej zmienne. Mikrokontroler układu VNC1L wykonuje operacje 8-bitowe, ale dodatkowy koprocesor arytmetyczny umożliwia szybkie obliczenia na danych 32-bitowych. Układ posiada wbudowany 8-bitowy rdzeń mikrokontrolera V-MCU, który jest oparty na architekturze

Tab. 1. Tryby pracy interfejsu		
JP1	JP2	Tryb interfejsu
OFF	OFF	UART
ON	OFF	SPI
OFF	ON	FIFO
ON	ON	UART

Harvardzkiej (przestrzeń programu i danych są rozdzielone). Dla wbudowanego mikrokontrolera dostępna jest pamięć Flash o pojemności 64 kB. Pamięć Flash może być programowana z wykorzystaniem wbudowanego bloku bootloadera z wykorzystaniem interfejsu UART. Kontroler może być zasilany napięciem +3,3 V z tolerancją +5 V dla linii portów. Posiada on niski pobór prądu wynoszący 25 mA (w trybie Standby 2 mA). Schemat ideowy modułu został przedstawiony na rys. 2. Układ VNC1L potrzebuje do poprawnej pracy niewielu zewnętrznych komponentów. Pamięć z interfejsem USB jest dołączana do złącza J1. Linie drugiego portu USB, do którego można dołączyć np. FT232 lub FT245 zostały wyprowadzone na złącze J3. Układ VNC1L jest taktowany za pośrednictwem rezonatora kwarcowego X1 o częstotliwości 12 MHz. Elemen-

WYKAZ ELEMENTÓW Rezystory

R1...R4: 27 Ω SMD R5, R6: 47 kΩ SMD R7: 180 Ω SMD R8, R9, R26: 10 kΩ SMD R10...R22: 100 kΩ SMD R23...R25: 330 Ω SMD Kondensatory C1, C4: 47 µF/16 V SMD C2, C3, C11: 100 nF SMD C5, C6: 47 pF SMD C7, C8: 10 pF SMD C9: 10 nF SMD C10: 1 nF SMD Półprzewodniki U1: VNCIL U2: SPX1117R-3-3 TO-252 X1: Kwarc 12 MHz D1, D2: LED SMD zielona D3: LED SMD czerwona Inne L1: koralik ferrytowy J1: złącze USB A J2: gniazdo na goldpin 1x9 J3: Goldpin 2x12

JP1, JP2: Goldpin 1x2 ze zworką

ty R5, R6 podciągają linie RESET oraz PROG do dodatniego napięcia zasilania. Linie te są wykorzystywane do uruchomienia wbudowanego bootloadera. Rezystor R26 informuje układ U1, że jest taktowany rezonatorem kwarcowym X1. Elementy R7, C9 i C10 współpracują z pętlą PLL układu U1. Układ U1 jest zasilany napięciem +3,3 V stabilizowanym przez U2. Dioda D1 sygnalizuje pracę urządzenia dołączonego do portu USB 1, a dioda D2 urządzenia dołączonego do portu USB 2. Dioda D3 sygnalizuje zasilanie modułu. Wykorzystując prosty programator można poprzez sygnały wyprowadzone na złącze J2 zapisać oprogramowanie do układu U1. Oprócz linii PROG i RESET, do programowania wykorzystywane są linie interfejsu UART. Zworki JP1 i JP2 umożliwiają wybór interfejsu, za pośrednictwem którego ma się odbywać komunikacja. W tab. 1 pokazano możliwe konfiguracje zworek i zależne od ich ustawienia aktywne interfejsy. Linie interfejsów układu VNCIL zostały wyprowadzone na złącze J3. Dostępne są tam interfejsy USB, UART, SPI oraz równoległy FIFO. Przyporzadkowane linie do danych interfejsów pokazano w tab. 2. Dodatkowo na złacze J3 zostały wyprowadzone linie zasilania. Moduł powinien być zasilany napięciem +5 V. W przypadku zasilania modułu napięciem +3,3 V, nie należy montować stabilizatora U2. Dodatkowe linie DA-TAREQ i DATAACK wskazują na tryb pracy (wysyłanie danych lub komend). Linie interfejsów zostały podciągnięte za pomocą rezystorów R10...R22 do dodatniego napięcia zasilającego.

Tab. 2. Linie I/O dostępnych interfej- sów		
UART	Równoległy FIFO	SPI Slave
TXD	D0	SCLK
RXD	D1	SDI
RTS#	D2	SDO
CTS#	D3	CS
DTR#	D4	
DSR#	D5	
DCD#	D6	
RI#	D7	
TXDEN#	RXF#	
	TXE#	
	WR#	
	RD#	

Rys. 3. Schemat montażowy modułu Host USB

Montaż i uruchomienie

Schemat montażowy modułu przedstawiono na rys. 3. Zastosowano większość elementów w obudowach SMD. Są one montowane po obu stronach płytki. Największym problemem może być przylutowanie układu VNC1L. Wystarczy do tego celu lutownica z cienkim grotem, cyna o średnicy 0,25 mm i trochę ostrożności. Gdyby w trakcie lutowania zwarły się wyprowadzenia układu, można posłużyć się plecionką odsysającą. Złącze J3 należy przylutować od dolnej strony płytki, tak aby było możliwe umieszczenie modułu w innym urządzeniu. Moduł po poprawnym zmontowaniu (przy braku pomyłek w montażu) należy zasilić napięciem +5 V podanym na linię 1, masę dołączamy do linii 3 złącza J3. Przed rozpoczęciem użytkowania modułu należy go zaprogramować jednym z dostępnych firmware. Do zaprogramowania układu można wykorzystać programator, który będzie opisany w EP. Ma on już kompatybilne ze złączem J2 wyprowadzenia. Umożliwia również zasilenie modułu Hosta USB napięciem +5 V. Zaprogramowanie układu VNC1L jest bardzo proste przy użyciu programu VPROG (rys. 4). Należy wybrać jedynie programator oraz *firmware*. Dokładny przebieg

Moduł Hosta USB

Tab. 3. Komendy modułu Hosta	USB		
Rozszerzone komendy ASCII przy pracy z terminalem	Skrócone (zapis szesnastkowy) komendy przy pracy z mikrokon- trolerem	Funkcja komendy	Odpowiedź
	Komendy przełączające pomiędzy kor	nendami skróconymi, a rozszerzonymi	
"SCS" <cr></cr>	\$10,\$0D	Włącza skrócony tryb komend	Zwraca znak zachęty ">",\$0D infor- mując, że urządzenie jest w trybie komend skróconych.
"ECS" <cr></cr>	\$11,\$0D	Włącza rozszerzony tryb komend	Zwraca znak zachęty "D:\>",\$0D in- formując, że urządzenie jest w trybie komend rozszerzonych.
"E" <cr></cr>	"E" <cr></cr>	Zwraca Echo	Zwrócony zostanie "E",\$0D w celu synchronizacji.
"e" <c1></c1>	"e" <c1></c1>	Zwraca Echo	Zwrócony zostanie "e",\$0D w celu synchronizacji.
	Odpowiedzi wskazujące	czy dysk jest włączony	
<cr></cr>	\$0D	Sprawdzenie czy dysk jest włączony	Zwrócony zostanie znak zachęty lub komunikat "no disk" dla wybranego trybu komend.
Odpowiedź sprawdzenia czy dysk je	st włączony dla rozszerzonego trybu	Jeśli dysk nie znaleziony	"No Disk",\$0D
kom	nend	Jeśli dysk znaleziony	"D:\>",\$0D
Odpowiedź sprawdzenia czy dysk j	jest włączony dla skróconego trybu	Jeśli dysk nie znaleziony	"ND",\$0D
KUII		Jeśli dysk znaleziony	">",\$0D
	Operacje na	katalogach	
"DIR" <cr></cr>	\$01,\$0D	Wyświetla listę katalogów	Zostają zwrócone nazwy plików oraz katalogów. Każda nazwa jest koń- czona znakiem \$0D. Katalog zawsze po nazwie ma znaki <sp>"DIR", ale przed znakiem \$0D.</sp>
"DIR" <sp> <nazwa><cr></cr></nazwa></sp>	\$01,\$20, <nazwa>,\$0D</nazwa>	Wyświetla wielkość pliku o podanej nazwie. Wykorzystywany, aby wie- dzieć ile danych odczytać z pliku.	\$0D, <nazwa><sp><wielkość w hex(4 bajty), pierwszy LSB> \$0D</wielkość </sp></nazwa>
"DLD" <sp> <nazwa><cr></cr></nazwa></sp>	\$05,\$20, <nazwa>, \$0D</nazwa>	Usuwa katalog	Usuwa katalog <nazwa> z wybrane- go katalogu. <ścieżka>\$0D</nazwa>
"MKD" <sp> <nazwa><cr></cr></nazwa></sp>	\$06,\$20, <nazwa>,\$0D</nazwa>	Tworzy katalog	Tworzy nowy katalog <nazwa> w wybranym katalogu. <ścieżka- >\$0D</nazwa>
"CD" <sp> <nazwa><cr></cr></nazwa></sp>	\$02,\$20, <nazwa> \$0D</nazwa>	Umożliwia zmianę katalogu na nowy wybrany <nazwa></nazwa>	<ścieżka>\$0D
"CD" <sp>""<cr></cr></sp>	\$02,\$20,\$2E,\$2E,\$0D	Wychodzi z katalogu	<ścieżka>\$0D
	Operacje	na plikach	
"RD" <sp> <nazwa><cr></cr></nazwa></sp>	\$04,\$20, <nazwa> \$0D</nazwa>	Czyta plik <nazwa></nazwa>	Ta komenda wysyła cały plik binarnie do monitora (terminal lub mikrokontroler). W pierwszej kolejno- ści powinna zostać odczytana liczba bajtów w pliku używając komendy "DIR" <sp> <nazwa> <cr>. <ścieżka>\$0D</cr></nazwa></sp>
"RDF" <sp> <liczba hex<br="" w="">(4 bajty)><cr></cr></liczba></sp>	\$0B,\$20, liczba w hex (4 bajty), \$0D	Czyta dane <liczba hex<br="" w="">(4 bajty)> z aktualnie otwartego pliku.</liczba>	Wysyła do monitora (terminal lub procesor) tylko wybraną liczbę danych. <ścieżka>\$0D
"DLF" <sp> <nazwa><cr></cr></nazwa></sp>	\$07,\$20, <nazwa> \$0D</nazwa>	Usuwa plik <nazwa></nazwa>	Usuwa plik z wybranego katalogu oraz zwalnia sektory FAT. <ścieżka>\$0D
"WRF" <sp> <liczba hex<br="" w="">(4 bajty)><cr> <zapisywane dane<br="">w wybranej ilości><cr></cr></zapisywane></cr></liczba></sp>	\$08,\$20, liczba w hex (4 bajty), \$0D \$dane,\$0D	Zapisuje dane <liczba hex<br="" w="">(4 bajty)> do końca aktualnie otwartego pliku.</liczba>	<ścieżka>\$0D
"OPW" <sp> <nazwa><cr></cr></nazwa></sp>	\$09,\$20, <nazwa>,\$0D</nazwa>	Otwiera plik do zapisu za pomocą komendy "WRF"	<ścieżka>\$0D
"OPR" <sp> <nazwa><cr></cr></nazwa></sp>	\$0E,\$20, <nazwa>,\$0D</nazwa>	Otwiera plik do odczytu za pomocą komendy "RDF"	<ścieżka>\$0D
"CLF" <sp> <nazwa><cr></cr></nazwa></sp>	\$0A,\$20, <nazwa>,\$0D</nazwa>	Zamyka plik dla zapisu	<ścieżka>\$0D

Moduł Hosta USB

Tab. 3. Komendy modułu Hosta USB c.d.			
Rozszerzone komendy ASCII przy pracy z terminalem	Skrócone (zapis szesnastkowy) komendy przy pracy z mikrokon- trolerem	Funkcja komendy	Odpowiedź
"REN" <sp> <oryginalna nazwa=""> <sp> <nowa nazwa=""><cr></cr></nowa></sp></oryginalna></sp>	\$0C,\$20, <oryginalna nazwa="">,\$20, <nowa nazwa=""> <cr></cr></nowa></oryginalna>	Zmienia nazwę pliku lub katalogu	<ścieżka>\$0D
"FS" <cr></cr>	\$12,\$0D	Zwraca w bajtach ilość wolnego miejsca na dysku	
	Komendy tylko przy pr	acy z interfejsem UART	
"SBD" <sp><dzielnik (3="" bajty)<br="">pierwszy LSB><cr></cr></dzielnik></sp>	\$14, \$20,dzielnik (3 bajty) pierwszy LSB >,\$0D	Szybkość transmisji danych (patrz tab. 6)	<ścieżka>\$0D
	Komendy zarządza	nia poborem mocy	
"SUD" <cr></cr>	\$15,\$0D	Powoduje uśpienie dysku, gdy nie jest używany. Dysk będzie auto- matycznie budzony, gdy będzie do niego wysyłana komenda.	<ścieżka>\$0D
"WKD" <cr></cr>	\$16,\$0D	Wyprowadza dysk z uśpienia	<ścieżka>\$0D
"SUM" <cr></cr>	\$17,\$0D	Zawiesza pracę monitora i wyłącza zegar	<ścieżka>\$0D
	Pozostałe	komendy	
"SD" <sp> <numer ascii<br="" sektora="" w="">hex><cr></cr></numer></sp>	\$0,\$20,\$0D	Zwalnia wybrany sektor. Używany do debatowania programu.	Wysyła 512 bajtów sektora wyszczególnionego w hex kon- wertowanego do ASCII. Każde 16 bajtów kończone jest znakiem \$0D. <ścieżka>\$0D
"IDD" <cr></cr>	\$0F,\$0D	ldentyfikuje dysk. Pokazuje informa- cje o dysku.	Wysyła dane bloku IDD i <ścieżke>\$0D
"FWV" <cr></cr>	\$1,\$0D	Pobiera wersje firmware	Pokazuje wersje głównego oprogra- mowania oraz reprogramowanego firmware VNC1L "MAIN x.xx"\$0D "RPRG x.xx"\$0D i <ścieżka>\$0D
	Komendy związane z FT232/FT24	45 dołączanymi do portu USB 1	
"FBD" <sp><dzielnik(3 bajty)="" pierw-<br="">szy LSB><cr></cr></dzielnik(3></sp>	\$18,\$20, <divisor (3="" bajty)="" pierwszy<br="">LSB>\$0D</divisor>	Szybkość transmisji danych (patrz tab. 6)	<prompt>\$0D</prompt>
"FMC" <sp><wartość (2="" bajty)=""> <cr></cr></wartość></sp>	\$19, \$20, <wartość (2="" bajty)="">,\$0D</wartość>	Ustawienie kontroli dla sygnałów RTS/DTR (patrz tab. 7)	<prompt>\$0D</prompt>
"FSD" <sp><wartość (2="" bajty)<br="">pierwszy LSB><cr></cr></wartość></sp>	\$1A, \$20,wartość (2 bajty) pierwszy LSB>,\$0D	Ustawienie parametrów ramki danych (patrz tab. 8)	<prompt>\$0D</prompt>
"FFC" <sp><wartość (1 bajt)><cr></cr></wartość </sp>	\$1B, \$20,wartość (1 bajt),\$0D	Ustawienie parametrów kontroli stru- mienia danych (patrz tab. 9)	<prompt>\$0D</prompt>
"FGM" <cr></cr>	\$1C,\$0D	Pobranie statusu (patrz tab. 7)	Zwraca status (2 bajty),\$0D
Gdzie: <sp> znak spacji</sp>			

programowania został przedstawiony przy opisie programatora układów Vinculum.

Oprogramowanie i dostępne komendy

Dla układu VNC1L mającego komunikować się z mikrokontrolerem dostępne są dwa rodzaje oprogramowania. Oprogramowanie VDIF realizuje funkcje interfejsu Host USB umożliwiającego obsługę pamięci masowych z interfej-

Tab. 4. Zwracane błędy		
Błąd	Tryb komendy	Odpowiedź
loéli komonda piorozpoznana	Rozszerzone komendy	"Bad Command",\$0D
Jesh komenda merozpoznana	Skrócone komendy	"BC",\$0D
lośli błod wykononia komondy	Rozszerzone komendy	"Command Failed",\$0D
jesii digu wykonania komendy	Skrócone komendy	"CF",\$0D

sem USB. Dostęp do pamięci dołączanej do portu Host USB jest możliwy za pomocą interfejsów: UART, równoległego FIFO, SPI oraz z urządzenia z interfejsem USB, które pozwala wykonywać operacje na dołączonej pamięci USB (mogą to być telefony, PDA, MP3 itp.). Oprogramowanie VDIF przyjmuje, że pamięć USB będzie dołączana

VPROG VNC1L-1A Flash Programm	er	
Select a device:		
UM232R	~	RDM File
Programming Flash:		Program
		riogram

Rys. 4. Okno programu VPROG służącego do programowania układów VNC1L

Tab. 5. Rezultat komendy IDD
IDD – Identify Disk Drive Results
"USB VID = \$", 2 bajty w ASCII, \$0D
"USB PID = \$", 2 bajty w ASCII, \$0D
"Vendor Id = ", 8 bajty w ASCII, \$0D
"Product Id = ", 16 bajty w ASCII, \$0D
"Revision Level = ", 4 bajty w ASCII, \$0D
"I/F = ","SCSI" lub "ATAPI" w ASCII, \$0D
"FAT12" lub "FAT16" lub "FAT32" w ASCII, \$0D
"Bajty/Sector = \$", 2 bajty w ASCII, \$0D
"Bajty/Cluster = \$", 3 bajty w ASCII, \$0D
"Pojemność = \$", 4 bajty w ASCII, \$0D
"Wolna przestrzeń = \$", 4 bajty w ASCII, \$0D

Tab. 6.	Prędkości	interfej	su UART
Prędkość	Pierwszy bajt	Drugi bajt	Trzeci bajt
300	\$10	\$27	\$00
600	\$88	\$13	\$00
1200	\$C4	\$09	\$00
2400	\$E2	\$04	\$00
4800	\$71	\$02	\$00
9600*	\$8	\$41	\$00
19200	\$9C	\$80	\$00
38400	\$4E	\$C0	\$00
57600	\$34	\$C0	\$00
115200	\$1A	\$00	\$00
230400	\$0D	\$00	\$00
460800	\$06	\$40	\$00
921600	\$03	\$80	\$00
1000000	\$03	\$00	\$00
1500000	\$02	\$00	\$00
2000000	\$01	\$00	\$00
000000	\$00	\$00	\$00
Uwaga: prędkość domyślna – 9600 bodów			

do portu USB 2, a pozostałe dostępne interfejsy będą służyć do komunikacji z dołączoną pamięcią USB. Dla opisywanego urządzenia bardziej odpowiednie będzie oprogramowanie VDAP, które różni się od oprogramowania VDIF tym, że do drugiego interfejsu USB można dołączyć układy Slave FTDI, takie jak FT232 lub FT245 i za ich po mocą komunikować się z dołączoną do portu USB 2 pamięcią USB. Moduł z tym o programowaniem u możliwi
 a komunikację urządzeń już wypofejsy USB firmy kacji z dołączoną pżna wykorzystać

sażonych w interfejsy USB firmy FTDI. Do komunikacji z dołączoną pamięcią USB można wykorzystać komendy zapisane w kodach ASCII. Przypominają one komendy systemu DOS (DIR, CD, MKD, itp.). Są również dostępne skrócone komendy (zapisywane w kodzie szesnastkowym) do obsługi pamięci USB poprzez dołączony mikrokontroler. W dalszej części artykułu zostanie pokazana obsługa pamięci poprzez dostępne interfejsy również z wykorzystaniem terminala. Zostanie

Tab. 7. Usta sygnałów RT FT232R	wienie kontroli dla S/DTR dla FT232B lub	
Pierwszy bajt	Operacje	
Bit 0	DTR# Stan $0 = off, 1 = on$	
Bit 1	RTS# Stan $0 = off, 1 = on$	
Bits 72	Zarezerwowane "0"	
Drugi bajt	Operacje	
Bit 0	1 = zmiana DTR, 0 = brak zmiany DTR	
Bit 1	1 = zmiana RTS, 0 = brak zmiany RTS	
Bits 72	Zarezerwowane "0"	

Tab. 8. Usta danych dla	wienie parametrów ramki FT232B lub FT232R
Pierwszy bajt	Operacje
Bit 70	Liczba przesyłanych bajtów – 7 lub 8
Drugi bajt	Operacje
Bit 20	Bit parzystości: 0 – none 1 – odd 2 – even 3 – mark 4 – space
Bit 53	Liczba bitów Stop: 0 – 1 bit stopu 1 – 1 bit stopu 2 – 2 bity stopu
Bit 6	1 = Wystanie break, 0 = Stop break
Bit 7	Zarezerwowane "0"

pokazany przykład założenia katalogu, w którym następnie tworzony będzie plik. Zostanie do niego zapisany przykładowy tekst, który następnie w celu weryfikacji będzie odczytywany. W tab. 3 pokazano dostępne komendy w przypadku oprogramowania VDAP. Dostepne są komendy rozszerzone oraz skrócone, wykorzystywane przy komunikacji z mikrokontrolerem. Komendy można podzielić na kilka grup. Dostępne są komendy przełączające pomiędzy rozkazami rozszerzonymi a skróconymi, komendy operacji na katalogach, na plikach, wskazujące czy dysk USB jest włączony itp. Są również komendy związane z wybranym interfejsem. W przypadku interfejsu UART można wybrać jego prędkość transmisji. Dostępne są komendy związane z poborem mocy, komendy z układami FT232 i FT245 dołączanymi do drugiego portu USB. Komend nie ma wiele i są bardzo łatwe w użyciu. W tab. 4 pokazano zwracane błędy podczas wystąpienia nierozpoznanej komendy lub braku jej wykonania. W tab. 5 pokazano zwracane informacje o dołączonym dysku USB po wykonaniu komendy IDD. Dostępne są wszystkie podstawowe informacje jak system plików czy pojemność dysku. W tab. 6 pokazano możliwe do wyboru prędkości interfejsu UART, jak i w przypadku wykorzystywania układu FT232. W tab. 7...9 pokazano parametry bajtów związanych z układem FT232 dołączanym do drugiego portu USB. W przypadku oprogramowania VDIF nie ma komend związanych z układami FT232 i FT245.

W drugiej części artykułu zostaną przedstawione przykładowe, praktyczne sposoby wykorzystania układu VNC1L.

Marcin Wiązania, EP marcin.wiazania@ep.com.pl

Tab. 9. Ustawienie parametrów kon- troli strumienia danych dla FT232B lub FT232R		
Pierwszy bajt	Operacje	
Bit 0	Sprzętowy handshake RTS/CTS	
Bit 1	Sprzętowy handshake DTR/DSR	
Bity 2	Programowy handshake XOFF/XOFF	
Bity 73	Zarezerwowane "0"	

USB,77 Moduł Hosta część 2 **AVT-983**

Cieszące się niezmiernie długo popularnością dyskietki 1,44 MB, których czytniki jeszcze do dziś są instalowane w komputerach, chyba powoli będą jednak odchodziły w zapomnienie. Do długotrwałego przechowywania danych wyparły je płytki CDROM i DVD, do chwilowego zapisania danych, np. w celu przeniesienia ich z komputera na komputer, już od dłuższego czasu służą pendrive'y. Wbudowana w nich pamięć półprzewodnikowa o pojemności dochodzącej do kilku gigabajtów nie daje szans dyskietce. Od niedawna, za sprawą układów Vinculum, pamięci pendrive można w bardzo prostv sposób wykorzystywać nawet w najprostszych systemach mikroprocesorowych.

Rekomendacje:

nowe układy rodziny Vinculum z pewnością szybko zdobędą popularność, tak jak stało się to w przypadku układów FT232 i FT245. Chętni ich stosowania nie mogą nie zrobić modułu Hosta USB.

PODSTAWOWE PARAMETRY Plvtka o wymiarach 56x44 mm • Zasilanie: +5 V, dostępne napięcie +3,3 V na pinach modułu Gniazdo: USB Host typu A • Interfejsy: UART, SPI, FIFO wybierane dwoma zworkami, drugi interfejs USB dostępny na pinach modułu Wskazania o stanie modułu za pomocą diod I FD · Współpraca z pamięciami masowymi z systemem plików FAT Komunikacja za pomocą kilkunastu pro-

stych komend przypominających komendy DOS

Komunikacja z wykorzystaniem komputerowego terminala

Stosując komendy rozszerzone, komunikację modułu Hosta USB z komputerowym terminalem można zrealizować w najprostszy sposób wykorzystując interfejs UART. Do tego celu niezbędny będzie programator układów Vinculum, który jak już wiemy, pełni jedynie funkcję konwertera USB<->RS232. Zainstalowano dla niego sterowniki wirtualnego portu COM. Za pomocą programatora można podać napięcie zasilania dla modułu Hosta USB. Zgodnie z tab. 1, aby wybrać interfejs UART, zworki JP1 i JP2 mogą być założone lub zdjęte. Do portu USB został dołączony pen-

Receive
CLEAR Reset Counter 12 🖨 Counter =
$D: \searrow$
USB VID = \$0BDA USB FID = \$0116 Vendor Id = Generic- Product Id = SD/MMC Revision Level = 1.00 I/F = SCSI FAT32 Bytes/Sector = \$0200 Bytes/Cluster = \$000400 Capacity = \$076E1800 Bytes Free Space = \$076E1400 Bytes
D: \>

Rys. 5. Informacje o dysku wyświetlone po wysłaniu rozkazu IDD

drive o pojemności 128 MB. Komunikacja będzie się odbywać

za pomocą komend

rozszerzonych. Do-

myślna prędkość

transmisji wynosi

9600 bodów, 1 bit

startu. 1 bit stopu.

brak bitu parzysto-

ści z włączoną kon-

trolą transmisji za

pomocą sygnałów

RTS/CTS. RTS to

linia żądania nada-

wania, a CTS to li-

nia gotowości do

wysłania danych.

Aby zrezygnować ze

sprzętowej kontro-

li transmisji, moż-

na linie RTS i CTS

połączyć ze sobą.

Wtedy do transmisji

będą wykorzystywane tylko linie TXD

i RXD. W termina-

lu należy ustawić

identyczne parame-

try transmisji. Przy

poprawnej komuni-

kacji, po umiesz-

czeniu dysku w złą-

czu USB modułu,

w oknie terminala

powinien pojawić

się znak zachęty

```
Receive
    CLEAR R
No Upgrade
D:
D: \searrow
TEST DIR
|D: \rangle
 Transmit
    CLEAR
 Macros
  Set Macros
MKD test
\operatorname{dir}
```

Rys. 6. Informacia wyświetlona D: >. Po wysłaniu po założeniu rozkazu IDD zosta- katalogu TEST

Moduł Hosta USB

	HELEIVE
CLEAR Reset	CLEAR Rese
TEST DIR D: \> D: \> . DIR D: \> D: \> D: \> . DIR DIR TEXT.TXT D: \>	. DIR DIR D: \> Bad Command D: \> . DIR DIR TEST.TXT D: \> D: \> D: \>
Transmit CLEAR Sen Macros Set Macros	Transmit Se Macros Set Macros WRF #000#000#000
DIR CD TEST DIR OPW TEXT.TXT DIR	mkd test dir cd test dir dir opw test.txt WRF
Rys. 7. Informacja wyświetlona po założeniu do zapi- su pliku <i>TEKST.TXT</i>	dir WRF tekst tes clf test.txt Rys. 8. Zapisanie danych do pliku <i>TEST.TXT</i> przy użyciu komendy WRF
Transmit <u>CLEAR</u> <u>Send File</u> Macros <u>Set Macros</u> <u>M1 M2</u> WRF #000#000#000#013#013 dir rd test.txt	ną wyświetlo- ne informacje o dysku (rys. 5). Można odczytać z tych informa- cji pojemność dysku, wielkość sektora oraz typ systemu plików, w tym przypad- ku jest nim FA- T32. W pierw- szej kolejność w ramach testu został założo- ny katalog <i>TEST</i>
Rys. 9. Odczy- tanie zawartości	(rys. 6) z wyko- rzystaniem ko-

tanie zawartości pliku TEST.TXT przy użyciu komendy RD

mendy MKD.

Listę katalogów

i plików moż-

na wyświetlić wysyłając komendę DIR. Następnie po wejściu do katalogu TEST (komendą CD) zostaje założony do zapisu plik TEKST. TXT (rys. 7). Do założenia pliku otwartego do zapisu wykorzystano komendę OPW. Do zapisu danych do pliku TEST.TXT wykorzystano komendę WRF (rys. 8), której jednym z parametrów jest informacja o liczbie zapisywanych bajtów. Składa się ona z 4 bajtów zapisanych szesnastkowo. Po zapisaniu do pliku przykładowego stringu "tekst testowy", plik jest zamykany z wykorzystaniem komendy CLF. Do odczytu zawartości pliku TEST. TXT wykorzystano komendę RD (rys. 9). Jak można się przekonać, obsługa pamięci USB jest bardzo prosta. Zapisane pliki można również odczytywać umieszczając dysk USB w komputerze (rys. 10). W ten sposób można bez większych problemów odczytać dane za pośrednictwem komputera, po zapisaniu ich przez inne urządzenie.

Komunikacja z wykorzystaniem i

z wykorzystaniem interfejsu UART

Na rys. 11 przedstawiono przykładowy sposób podłączenia mikrokontrolera do interfeisu UART modułu Host USB. Z modułem komunikuje się mikrokontroler AVR ATmega88. Linie interfejsu RS232 zostały pokazane w tab. 10. Do komunikacji wykorzystano tylko linie RXD i TXD. Linie kontroli transmisji CTR i RTS zostały ze sobą połączone. Oczywiście jest możliwe, aby tymi liniami sterował mikrokontroler. Do mikrokontrolera został dołączony również wyświetlacz LCD, na którym będą prezentowane informacje z działania programu. Program sterujący mikrokontrolerem został napisany w Bascom AVR i będzie realizował identyczne operacje

Rys. 10. Odczytanie zawartości pliku *TEST.TXT* po włożeniu dysku USB w komputerze

Tab. 10. Sygnały interfejsu UART		
Nazwa	Тур	Opis
TXD	Wyjście	Dane wysyłane
RXD	Wejście	Dane odbierane
RTS#	Wyjście	Żądanie nadawania
CTS#	Wejście	Gotowość do wysyłania danych
DTR#	Wyjście	Gotowość do odbierania danych
DSR#	Wejście	Odbiornik gotowy do odbio- ru danych
DCD#	Wejście	Odbiór fali nośnej
RI#	Wejście	Wskaźnik wywołania
TXDEN	Wyjście	Odblokowuje transmisję przez RS485

jak w przypadku testowania modułu poprzez terminal. Będzie więc zakładany katalog, awnim plik, w którym zostaną zapisane dane. Następnie utworzony plik zostanie odczytany i jego zawartość zostanie wyświetlona na wyświetlaczu LCD. Aby moduł pracował z interfejsem UART, zgodnie z tab. 1 należy odpowiednio ustawić zworki JP1 i JP2. Do portu USB został dołączony również pendrive o pojemności 128 MB. Komunikacja będzie się odbywać za pomocą skróconych komend, zalecanych przy współpracy z mikrokontrolerem. Komendy skrócone są prostsze i sto-

Tab. 11. Sygnały interfejsu równole-		
Nazwa	Түр	Opis
D0	We/Wy	Bit 0 magistrali danych D
D1	We/Wy	Bit 1 magistrali danych D
D2	We/Wy	Bit 2 magistrali danych D
D3	We/Wy	Bit 3 magistrali danych D
D4	We/Wy	Bit 4 magistrali danych D
D5	We/Wy	Bit 5 magistrali danych D
D6	We/Wy	Bit 6 magistrali danych D
D7	We/Wy	Bit 7 magistrali danych D
RXF#	Wyjście	Kiedy stan wysoki, nie można czytać danych z FI- FO. Kiedy stan niski dane są w FIFO. Dane można odczytać strobując linię RD#.
TXE#	Wyjście	Kiedy stan wysoki, nie można zapisywać danych do FIFO. Kiedy stan niski można zapisywać dane do FIFO. Dane można zapisy- wać strobując linię WR.
WR#	Wejście	Dane z linii D0D7 są zapisywane do FIFO kiedy sygnał WR zmienia stan z wysokiego na niski.
RD#	Wejście	Dane z FIFO pojawiają się na liniach D0D7 kiedy sygnał RD# zmienia stan z wysokiego na niski.

Rys. 11. Przykładowy sposób dołączenia mikrokontrolera do interfejsu UART modułu Host USB

Rys. 12. Przebiegi występujące podczas odczytu danych z FIFO

Rys. 13. Przebiegi występujące podczas zapisu danych do FIFO

sując je przesyła się mniej danych. Domyślna prędkość transmisji wynosi 9600 bodów, 1 bit startu, 1 bit stopu, brak bitu parzystości, z włączoną kontrolą transmisji danych za pomocą sygnałów RTS/CTS. Również domyślnie wykonywany jest rozszerzony zestaw komend. Na list. 1 przedstawiono program testowy komunikujący się z modułem Hosta USB. W programie wykorzystano buforową transmisję przez UART, zarówno danych odbieranych, jak i wysyłanych. W pierwszej kolejności oczekuje się na zgłoszenie się dysku USB (oczekiwany jest odbiór znaków D:>). Jeśli dysk zostanie wykryty, wysyłany jest rozszerzony rozkaz SCS, który powoduje przełączenie modułu do komunikacji ze skróconymi komendami. Po jego wysłaniu, dysk USB będzie się zgłaszał znakiem ">". Znak ">" będzie również świadczyć o poprawności wykonania danej komendy. Jego otrzymanie jest sprawdzane po każdej komendzie. Jeśli nie zostanie on otrzymany, zgłaszany jest błąd. W dalszej kolejności komunikacja z dyskiem odbywa się za pomocą instrukcji Print i Input. Zakładany jest katalog, następnie plik z danymi. Na końcu programu następuje odczyt zawartości pliku i jego wyświetlenie na wyświetla-

Rys. 14. Schemat dołączenia modułu Host USB do mikrokontrolera z wykorzystaniem interfejsu równoległego FIFO

czu LCD. Procedura Odp sprawdza poprawność wykonania komend. Jak widać założenie katalogu i pliku jest bardzo proste. Nie jest przy tym wymagana duża liczba operacji. Do obsługi dysku wystarczy nawet niewielki mikrokontroler, który nie musi posiadać dużo pamięci i wyprowadzeń.

Komunikacja z wykorzystaniem interfejsu równoległego FIFO

Komunikacja z wykorzystaniem portu równoległego FIFO znacznie przyspiesza transmisję danych w odniesieniu do interfejsów szeregowych. Interfejs równoległy wymusza jednak stosowanie kilkunastu linii mikrokontrolera. W module Host USB interfejs równoległy FIFO można aktywować, zakładając tylko zworkę JP2. W tab. 11 pokazano opis linii interfejsu równoległego FIFO. Na rys. 12 pokazano przebiegi podczas odczytu da-nych z FIFO. Nieodebrane dane są wskazywane niskim stanem linii RXF. Na rys. 13 pokazano przebiegi podczas zapisu danych do FIFO. Zapełnienie FIFO danymi jest wskazywane stanem wysokim linii TXE. Interfejs FIFO modułu Host USB działa identycznie. jak interfejs FIFO układu FT245. Na rys. 14 pokazano przykładowy schemat dołączenia modułu Host USB do mikrokontrolera z wykorzystaniem interfejsu równoległego FIFO.

Marcin Wiązania, EP marcin.wiazania@ep.com.pl

End If End Sub

\$prog &HFF , &HFF , &HDF , &HF9 \$regfile = ,m88def.dat" 'informuje kompilator o pliku dyrektyw wykorzystywanego mikrontrolera ścrystal = 8000000 sci rezonatora kwarcowego 'informuje kompilator o czestotliwo-\$baud = 9600 transmisji 'informuje kompilator o predkosci \$hwstack = 40 \$swstack = 40 \$framesize = 40 Config Lcd = 16 * 2 swietlacza LCD 'konfiguracja wartosci stosow 'konfiguracja wartosci stosow 'konfiguracja wartosci stosow 'konfiguracja organizacji znakow wy-Config Ledpin = Pin , Db4 = Portc.3 , Db5 = Portc.2 , Db6 = Portc.1 , Db7 = Portc.0 , E = Portc.4 , Rs = Portc.5 'konfiguracja pinow mikrokontrolara do ktorych dolaczone zostały linie wy-'konfiguracja pinow mikrokontrolara do ktorych dolaczone zostały linie wyswietlacza swietlacza Config Serialin = Buffered , Size = 50 Config Serialout = Buffered , Size = 50 `konfiguracja bufora wejsciowego `konfiguracja bufora wejsciowego Declare Sub Odp 'procedura sprawdzania poprawnosci wykonania komendv Dim Znaki As String * 40 'definicja zmiennej znaki typu string 'opoznienie 2 sekundy 'wylaczenia echa dla instrukcji input Wait 2 Echo Off Enable Interrupts odblokowanie przerwan globalnych Cursor Off 'wylaczenie kursora Cls `czysc lcd `wyswietlenie komunikatu Lcd "Brak dysku' Do 'poczatek petli 'odczyt danych z UART , Input Znaki Loop Until Znaki = "D:/>" 'petla wykonywana az odebrane zostana znaki D:\> Print "SCS" ; : Print Chr(&HOd); 'przelacznie na skrocony zestaw ko mend 'sprawdzenie wykonania komendy Call Odp Cls czysc lcd Lcd "Dysk aktywny" 'wyswietlenie komunikatu Wait 1 'opoznienie 1 sekundy Cls Lcd "MKD TEST" czysc lcd wyswietlenie komunikatu Print Chr(&HOd); 'wyslanie znaku CR w ramach testu Call Odp 'sprawdzenie wykonania komendy Print Chr(&H06) ; : Print Chr(&H20) ; : Print "TEST" ; : Print Chr(&H0d); 'zalozenie katalogu TEST Call Odp 'sprawdzenie wykonania komendy Wait 1 'opoznienie 1 sekundy Cls 'czysc lcd LCU "CU IEST" Print Chr(&HO2) ; : Print Chr(&H2O) ; : Print "TEST" ; : Print Chr(&HOd); `wej: logu TEST 'wejscie do kata-Call Odp `sprawdzenie wykonania komendy `opoznienie 1 sekundy Wait 1 Cls 'czysc lcd `czysc lca `wyswietlenie komunikatu ````Cbr(&HOd); ``zalozenie Lcd "OPW TEST.TXT" 'wyswietlenie kom Print Chr(&H09) ; : Print Chr(&H20) ; : Print "TEST.TXT" ; : Print Chr(&H0d); pliku do zapisu TEXT.TXT Call Odp 'sprawdzenie wykonania komendy Wait 1 opoznienie 1 sekundy Cls 'czysc lcd 'wyswietlenie komunikatu Lcd "WRF TEST.TXT" Print Chr(&H08) ; : Print Chr(&H20) ; : Print Chr(&H00) ; : Print Chr(&H00); 'zapis do pliku TEXT.TXT Print Chr(&H00) ; : Print Chr(&H0d) ; : Print Chr(&H0d); Print "tekst testowy" ; : Print Chr(&H0d); 'tekstu majacego 13 znakow o tresci tekst testowy Call Odp Call Odp 'sprawdzenie wykonania komendy 'sprawdzenie wykonania komendy Wait 1 'opoznienie 1 sekundy 'czysc lcd 'wyswietlenie komunikatu Cls Lcd "CLF TEST.TXT" Print Chr(&H0a) ; : Print Chr(&H20) ; : Print "TEST.TXT" ; : Print Chr(&H0d); pliku TEXT.TXT do zapisu 'zamkniecie 'sprawdzenie wykonania komendy Call Odp Wait 1 'opoznienie 1 sekundy 'czysc lcd Cls Lcd "RD TEST.TXT" 'wyswietlenie komunikatu Print Chr(&H04) ; Print Chr(&H20) ; Print "TEST.TXT" ; Print Chr(&H0d); wartosci pliku TEXT.TXT 'odczyt za-Input Znaki 'odczyt danych z UART 'druga linia LCD Lowerline Lcd Left(znaki , 13) z pliku TEXT.TXT 'wyswietlenie tesktu odczytanego Home 'pierwsze linia LCD nieskonczona petla do-loop Do Loop `koniec nieskonczonej petli `koniec programu End Sub Odp 'podprogram sprawdzania poprawnosci wykonania komendy odczyt danych z UART Input Znaki If Znaki <> ">" Then 'jesli znak inny niz > to 'czysc LCD Cls Lcd "Blad komendy" wyswietlenie komunikatu Do 'nieskonczona 'petla do-loop Loop

'koniec procedury

List. 1. Program testowy wykorzystujący interfejs UART do komunikacji z pamięcią USB Program wykorzystujacy interfejs UART do komunikacji z pamiecia USB 'z wykorzystaniem układu VNCIL (Vinculum) 'Zaklozony zostaje katalog w ktorym nastepnie tworzony jest plik. 'Do pliku zapisywany jest tekst, ktory podczas odczytu wyswietlany jest na LCD 'Program mozna rowniez wykorzysta do komunikacji mikrokontrolera z pamiecia USB

'konfiguracja bitow FUSE

wykorzystaniem interfejsu USB Slave jak FT232 lub FT245.

Marcin Wiazania `marcin.wiazania@ep.com.pl