PROJEKTY

Moduł 4 przekaźników z interfejsem Bluetooth

DODATKOWE MATERIAŁY

NA FTP:

ftp://ep.com.pl

USER: 22086, PASS: 218655ee

W ofercie AVT*

AV 1-5552

- Podstawowe informacje: • 4 przekaźniki wykonawcze (125 V AC lub
- 28 V DC/12 A).
- Sygnalizacja statusu za pomocą diod LED oraz aplikacji sterującej.
- Wyłącznik awaryjny wyłączający wszystkie
- przekaźniki. Możliwość blokady sterowania.
- Sterowanie za pomocą aplikacji dla systemu
- Android (lub wykonanej samodzielnie). • Mikrokontroler ATmega8, moduł Bluetooth BTM222

Projekty p<u>okrewne na FTP:</u>

(wymienione	e artykuły są w całości dostępne na FTP)
AVT-5551	Przełącznik z interfejsem Bluetooth
	(EP 9/2016)
AVT-1916	Konfigurowalny przełącznik
	4-kanałowy (EP 8/2016)
AVT-1914	Uniwersalny 2-kanałowy moduł
	przekaźnikowy (EP 8/2016)
AVT-1890	Moduł przekaźników z USB
	(EP 6/2016)
AVT-5538	Moduł załączający z triakami
	(EP 5/2016)
AVT-3130	Moduł I/O sterowany przez USB
	(EdW 5/2015)
AVT-1815	4-kanałowy przełącznik sterowany
	dowolnym pilotem IR (EP 8/2014)
AVT-5368	Programowalny moduł przekaźników
	(EP 11/2012)
AVT-1679	Moduł wykonawczy z triakami
	(EP 6/2012)
AVT-1659	8-kanałowy miniaturowy moduł
	przekaźników (EP 1/2012)
AVT-1656	Uniwersalny moduł wykonawczy
	(EP 12/2011)
AVT-1560	8-kanałowa karta przekaźników
	(EP 2/2010)
AVT-1481	Przekaźnikowy moduł wykonawczy
	(EP 8/2008)
AVT-925	Karta przekaźników na USB
	(EP 4/2006)
* Uwaga: Zestawy AVT mog	ą występować w następujących wersjach:
AVT xxxx UK to do	żaprogramowany układ. Tylko i wyłącznie. Bez elementów datkowych.
AVT xxxx A pły wy	tka drukowana PCB (lub płytki drukowane, jeśli w opisie raźnie zaznaczono), bez elementów dodatkowych.
AVT XXXX A+ pły A i	tka drukowana i zaprogramowany układ (czyli połączenie wersj wersji UK) bez elementów dodatkowych.
AVT XXXX B pły ny	tka drukowana (lub płytki) oraz komplet elementów wymienio- w załączniku pdf
AVT XXXX C to wa	nic innego jak zmontowany zestaw B, czyli elementy wluto- ne w PCB. Należy mieć na uwadze, że o ile nie zaznaczono
do	datkowych, które nie zostały wymienione w załączniku pdf
AVI XXXX CD OPI to	ogramowanie (nieczęsto spotykana wersja, tecz jeśli występuje niezbędne oprogramowanie można ściągnąć, klikając w link
Nie każdy zestaw	ieszczony w opisie kitu) AVT występuje we wszystkich wersjach! Każda wersja ma
załączony ten sar wersję zamawiasz	n puk par! Poaczas składania zamówienia upewnij się, którą ! (UK, A, A+, B lub C). http://sklep.avt.pl

Schemat ideowy układu przedstawiono na **rysunku 1**. Sercem układu jest mikrokontroler ATmega8 pracujący z zewnętrznym rezonatorem kwarcowym 7,3728 MHz. Częstotliwość taktowania mikrokontrolera tak dobrano, aby błąd transmisji układu USART był jak najmniejszy. Rezystor R1 (10 k Ω) zasila wyprowadzenie zerujące, aby mikrokontroler nie został zrestartowany przez zaburzenia mogące wystąpić na doprowadzeniu. Przekaźniki są włączane kluczami Moduł służy do bezprzewodowego sterowania za pośrednictwem interfejsu Bluetooth dowolnymi 4 urządzeniami podłączonymi do przekaźników wykonawczych. W dowolnym momencie pracy układu można zablokować możliwość

bezprzewodowego sterowania wyjść mocy. Ze względów bezpieczeństwa układ został także wyposażony w awaryjny wyłącznik wszystkich przekaźników bez konieczności używania aplikacji.

Rekomendacje: urządzenie jest szczególnie przydatne wszędzie tam, gdzie jest konieczne zdalne włączanie i wyłączanie różnych odbiorników prądu. Może być stosowane w roli sterownika oświetlenia lub urządzeń.

tranzystorowymi. Rezystory R4...R7 ograniczają prąd baz tranzystorów, a diody D5... D8 zabezpieczają tranzystory przed przepięciami, które występują podczas wyłączania przekaźników. Rezystory R8...R11 ograniczają prąd diod LED D1...D4 wizualizujących stan przekaźników.

Jako moduł radiowy Bluetooth zastosowano BTM-222 firmy Rayson pracujący w klasie 1 i zapewniający zasięg rzędu 100 metrów. Do uzyskania takiego zasięgu jest wymagana antena zewnętrzna. W projekcie wykorzystano pokazaną na **fotografii 2** antenę BLU-ANT01R o impedancji 50 Ω , pracującą w zakresie częstotliwości 2,4...2,5 GHz z zyskiem energetycznym 1 dBi. Antenę dołączono do gniazdka SMA umieszczonego na płytce PCB. Komunikacja z modułem jest zwyczajną transmisją szeregową RS232, jednak moduł pracuje przy poziomach logicznych CMOS 3,3 V, a mikrokontroler 5 V, dlatego zastosowano konwerter poziomów zbudowany z użyciem bramki 74HC14 oraz dzielnika rezystancyjnego R2/ R3. Wejścia niewykorzystanych bramek dołączono do masy, aby uniknąć zakłóceń.

Program sterujący mikrokontrolerem napisano za pomocą Bascoma AVR. W pętli głównej program sprawdza stany przełączników stykowych bufor wejściowy. Włączaniu i wyłączaniu poszczególnych przekaźników przypisano komendy w postaci kodów ASCII, dlatego zmiana stanu danego przekaźnika odpowiada przesłaniu

Rysunek 1. Schemat ideowy modułu z interfejsem Bluetooth

PROJEKTY

odpowiedniego znaku z terminalu. Z racji zastosowania możliwości blokowania sterowania bezprzewodowego stan przycisku blokujacego jest co kilka sekund przesyłany do odbiornika w postaci wyrazów: "ENA-BLED" oraz "DISABLED". Takie rozwiązanie nie jest konieczne, ale zostało wprowadzone,

Wvkaz elementów Rezystory: (SMD 1206) R1: 10 kΩ R2: 3,3 kΩ R3: 6.8 kΩ R4...R7: 3,3 kΩ R8. R11: 150 O R12, R13: 100 Ω Kondensatory: C1, C5, C7, C8, C10: 100 nF (SMD 1206) C2, C9: 10 μF/16 V C3: 100 µF/16 V C4, C6: 22 pF (SMD 1206) Półprzewodniki: D1...D4: dioda LED, zielona, 5 mm D5...D8: 1N4148 D9: dioda LED, żółta, 5 mm D10: dioda LED, czerwona, 5 mm T1...T4: BC807 U1: LM1117 U2: ATmega8 (TQFP32) U3: 74HC14 U4: BTM222 Inne: Q1: kwarc 7,3728 MHz X2: złącze SMA, antena 2,4 GHz Z1: listwa goldpin 5 pin Z2: listwa goldpin 2 pin CON1: złącze śrubowe ARK500/2 CON2...CON5: złącze śrubowe ARK500/3

Fotografia 2. Antena BLUE-ANT001 na pasmo 2,4 GHz

aby nie zakłócić odzwierciedlania stanu przycisków w programie komputerowym.

Oprogramowanie

Przedstawiony powyżej układ jest jedynie przystawką do komputera, laptopa lub telefonu komórkowego i aby w pełni go wykorzystać, konieczny jest program komputerowy lub aplikacja dla systemów Android. Dla prezentowanego układu wykonano aplikacje dla komputerów PC w C# pracujacych na platformie .NET Framework. Dlatego do uruchomienia jest wymagane zainstalowanie środowiska Microsoft .NET Framework w wersji 4.0 lub nowszej. Fragment programu reprezentujący obsługujący zdarzenia odebrania znaków przez port szeregowy pokazano na listingu 1. W wypadku odebrania komendy zablokowania odbioru przez Bluetooth przyciski zmiany stanu przekaźników zostają zablokowane do czasu otrzymania komendy oznaczającej odblokowanie sterowania bezprzewodowego. Okno aplikacji w różnych stanach pracy przedstawiono na rysunku 3. Pierwsze okno przedstawia wygląd aplikacji po włączeniu bez ustawienia i otwarcia portu. Z kolei kolejne przedstawia aplikację podczas działania. Zrzut aplikacji w przypadku zablokowania sterowania bezprzewodowego obrazuje ostatnie okno. Program przy uruchomieniu pobiera wszystkie dostępne nazwy portów szeregowych i ładuje je do listy rozwijanej. W przypadku, gdy zostanie wyświetlone nowe urządzenie już po włączeniu programu, nie zostanie wykryte. W tym celu zastosowano ikonę odśwież, pobierającą aktualne nazwy portów. Dodatkowo ikona ta służy do zamykania otwartego portu i może być użyta, jeśli użytkownik zechce zmienić nazwę portu w trakcie działania programu.

Montaż i uruchomienie

Na rysunku 4 pokazano schemat montażowy układu. W projekcie wykorzystano mikrokontroler ATmega8 w obudowie

Rysunek 3. Okno aplikacji w różnych stanach pracy

TQFP32, układ 74HC14 w obudowie SO14 oraz moduł BTM222. Istnieje kilka technik montażu powierzchniowego układów w obudowach TQFP czy SO. Jedną z nich jest użycie stacji na gorące powietrze oraz odpowiedniego topnika. Montażu można dokonać również zwykłą stacją lutowniczą wyposażoną w specjalny grot minifala lub zwykły grot szpilkowy,

Listing 1. Fragment programu reprezentujący obsługujący zdarzenia odebrania znaków przez port szeregowy private void serialPort1_DataReceived(object sender, SerialDataReceivedEventArgs e) string s = serialPort1.ReadTo("\r\n"); if (s == "DISABLED") button1.Invoke(new EventHandler(delegate { button1.Enabled = false; })); button2.Invoke (new EventHandler (delegate button2.Enabled = false; })); button3. Invoke (new EventHandler (delegate { button3.Enabled = false; })); button4. Invoke (new EventHandler (delegate button4.Enabled = false;

} if {	<pre>button5.Invoke(new button6.Invoke(new button7.Invoke(new button8.Invoke(new (s == "ENABLED")</pre>	EventHandler(delegate EventHandler(delegate EventHandler(delegate EventHandler(delegate	{ { { {	<pre>button5.Enabled = fals button6.Enabled = fals button7.Enabled = fals button8.Enabled = fals</pre>	<pre>se; })) se; })) se; })) se; }))</pre>
	button1.Invoke (new	EventHandler(delegate	{	button1.Enabled = true	e; }));
	button2.Invoke (new	EventHandler(delegate	{	button2.Enabled = true	≩; }));
	button3.Invoke (new	EventHandler(delegate	{	button3.Enabled = true	≩; }));
	button4.Invoke (new	EventHandler (delegate	{	button4.Enabled = true	¥; }));
	button5.Invoke (new	EventHandler(delegate	{	button5.Enabled = true	e; }));
	button6.Invoke (new	EventHandler (delegate	{	button6.Enabled = true	¥; }));
	button7.Invoke (new	EventHandler(delegate	{	button7.Enabled = true	≥; }));
	button8.Invoke (new	EventHandler(delegate	{	button8.Enabled = true	<pre>; }));</pre>
1					

Rysunek 4. Schemat montażowy modułu z interfejsem Bluetooth

stosując cynę o niewielkiej średnicy. Na **fotografii 5** przedstawiono zmontowaną płytkę od strony ścieżek, a na **fotografii 6** od strony elementów. Przy montażu należy zwrócić uwagę, aby nie zrobić zwarcia między wyprowadzeniami oraz aby nie uszkodzić termicznie układu. Po wlutowaniu mikrokontrolera, układu 74HC14 i modułu BTM222, należy wlutować pozostałe elementy SMD aż po zworki

Tabela 1. Ustawienia bitów bezpieczników				
Fusebit	Stan			
BODLEVEL	Niezaprogramowany			
BODEN	Niezaprogramowany			
SUT1	Niezaprogramowany			
SUT0	Niezaprogramowany			
CKSEL3	Niezaprogramowany			
CKSEL2	Niezaprogramowany			
CKSEL1	Zaprogramowany			
CKSEL0	Niezaprogramowany			
RSTDISBL	Niezaprogramowany			
WTDON	Niezaprogramowany			
SPIEN	Zaprogramowany			
СКОРТ	Niezaprogramowany			
EESAVE	Niezaprogramowany			
BOOTSZ1	Zaprogramowany			
BOOTSZ0	Zaprogramowany			
BOOTRST	Niezaprogramowany			

Fotografia 5. Zmontowany moduł – widok od spodu

i elementy do montażu przewlekanego, od najmniejszych po największe.

Wszystkie potrzebne sygnały do programowania mikrokontrolera zostały wyprowadzone na złączu szpilkowym Z1, dzięki

Fotografia 6. Zmontowany moduł – widok od góry

czemu nie trzeba programować mikrokontrolera w podstawce przed wlutowaniem, a można tego dokonać po zmontowaniu układu. Bity konfiguracyjne mikrokontrolera należy ustawić zgodnie z **tabelą 1**, w systemie heksadecymalnym powinny wyglądać następująco:

- 1. Fuse High Byte: 0xD9.
- 2. Fuse Low Byte: 0xFD.

Podczas tej czynności należy być ostrożnym, gdyż przypadkowe błędne ustawienie bitów konfiguracyjnych może przynieść niekorzystne skutki, a nawet zablokowanie mikrokontrolera. Na płytce znajdują się trzy diody. Zielona reprezentuje pracę układu (zasilanie), żółta stan połączenia, a czerwona sygnalizuje, że moduł odbiera dane. Po wlutowaniu wszystkich elementów i zaprogramowaniu mikrokontrolera układ jest gotowy do użycia. Przed włączeniem programu należy ustawić wirtualny kanał szeregowy COM, do którego będzie dołączony moduł Bluetooth. W tym celu należy kliknąć na ikonę modułu Bluetooth prawym przyciskiem myszy i wybrać Dodaj urządzenie. Po ukazaniu się okna, jak na rysunku 7, należy wybrać znalezione urządzenie i wybrać Dalej. W kolejnym oknie wybrać opcję Wprowadź kod parowania urządzenia (rysunek 8). Następnie należy wpisać kod "1234" i zakończyć proces parowania. W tym momencie zostanie wyświetlone okno informujące, do którego portu zostało dołączone wybrane urządzenie (rysunek 9) – należy zapamiętać pierwszą nazwę (w omawianym przypadku COM5). Po zakończeniu procesu parowania trzeba włączyć program. W pierwszym kroku należy z listy wyboru wybrać wcześniej otrzymaną nazwę portu (w omawianym przykładzie COM5) i wcisnąć Otwórz port. W tym momencie żółta

Nybierz urządzenie do do	dania do te	go komputera	8	
ystem Windows będzie nadal sz.	lai newych urz	ądzeń i wyświetlał	l je tutaj.	
U Ruetesth				

Rysunek 7. Wybranie parowanego urządzenia Bluetooth

0	🖉 Dodawanie urządzenia	
	Wybierz opcję parowania	
	 Otwórz kod parowania za mnie Te urzędzenie ma Klewiaturę. 	1
	 Wprowadž kod parowania urządzenia To wrzdzenie na tod parowania. Okraytej je z urzędzenia luk z jego dokumentacji. 	Serial Adaptor
	 Sparuj urządzenie bez użycia kodu Ten typ urzędzenie (na przykład mysz) nie wymaga bezpiecznego połączenia. 	
	Jak sprawdzić, czy ustadzenie ma kod zarowania?	
		Dvinj Anuluj

Rysunek 8. Wprowadzenie kodu parowania

📙 Instalacja oprogramowania sterownika		-Re
Urządzenie jest gotowe do użycia		
Standardowy port szeregowy przez łącze Bluebooth (COM5) Standardowy port szeregowy przez łącze Bluebooth (COM7)	🖋 Gotowe do uzycia 🖋 Gotowe do uzycia	
		Zamknij

Rysunek 9. Wyświetlenie okna informującego o wirtualnym porcie COM

dioda powinna przestać migać i świecić ciągłym światłem, co świadczy o poprawnym zestawieniu połączenia programu z urządzeniem.

Krzysztof Gońka krzysztof.gonka@interia.pl

http://m.ep.com.pl Najlepszy Mobilny Adres w Sieci

